A unified approach to uncertain optimization
نویسندگان
چکیده
Our goal in this talk is to present unifying concepts for both stochastic and robust optimization problems involving infinite uncertainty sets. We apply methods from vector optimization in general spaces, set-valued optimization and scalarization techniques to develop a unified characterization of different concepts of robust optimization and stochastic programming. These methods provide new insights on the interrelation between different concepts for handling uncertainties in scalar optimization problems and naturally lead to new concepts of robustness.
منابع مشابه
A UNIFIED MODEL FOR RESOURCE-CONSTRAINED PROJECT SCHEDULING PROBLEM WITH UNCERTAIN ACTIVITY DURATIONS
In this paper we present a unified (probabilistic/possibilistic) model for resource-constrained project scheduling problem (RCPSP) with uncertain activity durations and a concept of a heuristic approach connected to the theoretical model. It is shown that the uncertainty management can be built into any heuristic algorithm developed to solve RCPSP with deterministic activity durations. The esse...
متن کاملA Single Machine Capacitated Production Planning Problem Under Uncertainty: A Grey Linear Programming Approach
The production planning is an important problem in most of manufacturing systems in practice. Unlike many researches existing in literature, this problem encounters with great uncertainties in parameters and input data. In this paper, a single machine capacitated production planning problem is considered and a linear programming formulation is presented. The production costs are assumed to be u...
متن کاملA Robust Scenario Based Approach in an Uncertain Condition Applied to Location-Allocation Distribution Centers Problem
The paper discusses the location-allocation model for logistic networks and distribution centers through considering uncertain parameters. In real-world cases, demands and transshipment costs change over the period of the time. This may lead to large cost deviation in total cost. Scenario based robust optimization approaches are proposed where occurrence probability of each scenario is not know...
متن کاملRobust Optimization Approach for Design for a Dynamic Cell Formation Considering Labor Utilization: Bi-objective Mathematical Model
In this paper, robust optimization of a bi-objective mathematical model in a dynamic cell formation problem considering labor utilization with uncertain data is carried out. The robust approach is used to reduce the effects of fluctuations of the uncertain parameters with regards to all the possible future scenarios. In this research, cost parameters of the cell formation and demand fluctuation...
متن کاملA Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint
In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...
متن کاملA New Algorithm for Constructing the Pareto Front of Bi-objective Optimization Problems
Here, scalarization techniques for multi-objective optimization problems are addressed. A new scalarization approach, called unified Pascoletti-Serafini approach, is utilized and a new algorithm to construct the Pareto front of a given bi-objective optimization problem is formulated. It is shown that we can restrict the parameters of the scalarized problem. The computed efficient points provide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 260 شماره
صفحات -
تاریخ انتشار 2017